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1. Introduction 

Our recent work (1, 2) in the area of granular physics indicates that certain (ordered with respect 
to size) arrangements of smooth, metal spheres adjacent to each other in one-dimensional (1-D) 
chains demonstrate noticeable shock absorption.  This has been observed and measured 
analytically (1–5) and through numerical integration of the equations of motion (1, 6–8).  
Experimental efforts (9–12) have focused primarily on solitary wave propagation and 
demonstrating reduced impact force using tapered chains (TCs) (4).  The system is scalable, as 
there does not appear to be any restrictions on particle size.  There is, of course, limits imposed 
by quantum physics and manufacture of the spheres.  Up to this point in our efforts, only single 
chains of varying length have been considered.  However, increasingly encouraging results have 
prompted us to consider the collective disruptive effects of many chains as a defeat mechanism 
against ballistic shock and other undesirable transient pulses. 

The goal of this report is to summarize both published and unpublished results through 
normalized energy calculations and include an analytical description of a potential armor panel.  
The contents are organized as follows.  A small overview of granular media and the ordered 
systems of interest are first discussed.  This is followed by a hard-sphere approximation and the 
numerical solution to the equations of motion.  In addition, our mathematical model provides 
some predictive capability for a certain range of systems.  Past experimental arrangements and 
intended investigations are reviewed.  In conclusion, we introduce a potential armor panel 
configuration with an estimate of the specific and volumetric absorbed energy and summarize 
the salient features of the report.   

2. Granular Media and TCs 

Granular media (13–17)—not to be confused with microscopic grains in a metal—are a curious 
thing.  In general, its members consist of discrete particles that can range in size from 
micrometers to meters and number in quantity from several to the uncountable.  The most well-
known constituents of this group are sands and powders and are utilized across many disciplines.  
In this communication, components of granular media may be referred to as grains, particles, 
beads, or spheres.  These media are particularly intriguing in that among other things it has 
properties of liquids and solids and calls have been made to add it as a fundamental state of 
matter (13).  Within the U.S.  Army Research Laboratory, granular media have been investigated 
for understanding wave propagation and its mathematical similarity to nonlinear rods (18).   

While granular media have been fundamental in saving lives for decades against ballistics 
(sandbags), new features are being observed in the growing literature which suggest a more 
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technological role may be at hand.  Particularly appealing and relatively simple to address is the 
behavior of 1-D systems where smooth elastic spheres intersect at a point in their initial state.  
Even though we may constrain the basis of variables in this system to just a few parameters, the 
complexity of its dynamics is formidable.  We call these systems tapered chains (TCs).   

We define TCs (figure 1) as 1-D granular arrays of elastic spheres that touch at a single point in 
their initial state and grow to a disk under compression in the plane perpendicular to the figure.  
The chains can be characterized by the number of grains, N, the successive decrease in size of 
the grains or tapering, q, and restitutive losses, ω.  Restitution (19–20) represents the expansion 
phase in a collision where energy is converted from elastic potential to kinetic and energy losses 
can be incorporated. 

 

 

Figure 1.  The simple tapered chain:  N = 10, q = 8%, L = 70.7 mm, and ri
 = 5 mm. 

It is intriguing and suggestive that, conceptually, granular media can be envisioned as the inverse 
of a porous material.  In a porous material, there are gaseous (air) voids within a solid matrix.  
For dry granular media, solid voids (grains) exist within a gaseous matrix (air).  Packing, 
however, limits the analogy; for grains, each entity is in contact with at least one other, whereas 
voids are not necessarily in contact with one another in porous materials.  This is an interesting 
comparison to draw because the considerable amount of work required to collapse the voids in a 
porous material makes it a favorable technology against ballistic shock (21).  Are there then 
opportunities in granular media for the armor designer to exploit?  

The interaction potential between adjacent elastic spheres was first identified by Hertz (22) circa 
1881.  Modern and eloquent derivations were later performed by both Landau and Lifshitz (23) 
and Love (24), with a simplified order of magnitude approach by Leroy (25).  More recently, 
Nesterenko (26) has written extensively on the dynamics of granular chains.  If one can show 
significant reduction in output energy while ensuring that the structure of granular columns can 
be maintained, it is quite possible to use these TCs against propagating shocks.  For now, we 
assume that one remains within the elastic regime.  Future work will begin to relax this 
restriction.
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3. Hard-Sphere Approximation 

These approximations differ from the numerically simulated systems in two major ways.  The 
first is that the chain is not bounded by fixed rigid walls.  As a result, energy will not continue to 
be transmitted up and down the chain.  The second is that the potential becomes infinite and as a 
consequence, the energy packet is only 1 grain in width.  The system therefore propagates energy 
as independent collisions.  This is congruent to the independent collision model proposed by Wu 
(4).  In the numerical results, width of the energy pulse is a function of the tapering—and when 
all grains are the same size it is about 5 grains wide.  By generating an iterative form of the 
conservation equations, one can arrive at an expression for the normalized kinetic energy (KE), 
KEN = KEout KEin .  This ratio will be the primary variable determining the absorptive quality of 
TCs. 

3.1 The Simple Tapered Chain 

The simple tapered chain (STC) is displayed in figure 1.  To generate an initial disturbance, an 
input velocity, vi , is applied to the rightmost and largest grain with radius, ri.  It propagates to 
the left, encountering an initially stationary grain of radius, ri+1.  The radius of the i +1 particle 
may be reduced by q% from ri.  This tapering q will be constant along the entire length of the 
chain.  During the transmission of the impulse along the chain, there may be energy losses and 
we consider two cases described in the following subsections. 

3.1.1  Lossless STC Hard-Sphere Approximation 

Ignoring any energy loss during a collision, we perform an STC hard-sphere approximation for a 
TC.  Masses and radii are expressed as 

 ri+1 = ri − riq = 1− q( )ri = εri , 

 mi = ρVi =
4
3

π ri
3ρ = η ri

3, (1) 

and 
 mi+1 = η ri+1

3 = ηε3 ri
3, (2) 

where ε =1− q.  Evaluating the conservation of momentum with a single prime denoting post 
collision values and the initial condition that the i +1 particle is stationary before a collision 
( vi+1 = 0), all η cancel and we obtain 

 

mivi + mi+1vi+1 = mivi
′ + mi+1vi+1

′

ri
3vi = ri

3vi
′ + ε3ri

3vi+1
′

vi = vi
′ + ε3vi+1

′

, (3)
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where equations 1 and 2 have been used.  Following the same procedure for the conservation of 
energy while ignoring the factor of one-half yields 

 vi
2 = ′ v i

2 + ε3 ′ v i+1
2 . (4) 

Letting A = ε3 ′ v i+1, we can rewrite equation 3 in terms of ′ v i  and substitute the resulting 
expression into equation 4, 

 

vi
2 = vi − A( )2 + A ′ v i+1

= vi
2 − 2Avi + A2 + A ′ v i+1

2vi = A + ′ v i+1

, 

 ′ v i+1

vi

=
2

1+ ε3 . (5) 

Note that for one collision, 

 
2 2

31 1 1 1out i i i i

in i i i i

KE KE m v v
KE KE m v v

ε+ + + +′ ′ ′⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (6) 

 
( )

3
1

23

4
1

i

i

KE
KE

ε

ε
+′ =

+
 . 

For N particles there will be N-1 collisions, each of which has the ratio in equation 6.  Therefore, 
the normalized KE, KEN , for the lossless STC hard-sphere approximation is given as 

 ( )
( )

–1
3

23

4 1–
=

1+ 1–

N

N

q
KE

q

⎧ ⎫
⎪ ⎪
⎨ ⎬

⎡ ⎤⎪ ⎪⎣ ⎦⎩ ⎭

. (7) 

3.1.2  Lossy STC Hard-Sphere Approximation 

The same approximation can be performed with some amount of energy loss, ˜ E L , included such 
that the system is still conservative and may represent a better approximation.  Consequently, the 
momentum equation 3 is unchanged, but equation 4 becomes 

 vi
2 = ′ v i

2 + ε3 ′ v i+1
2 + ˜ E L . (8) 

One then obtains a more complicated expression replacing equation 5: 

 ′ v i+1

vi

=
2 −

˜ E L
ε3vi ′ v i+1

1+ ε3 . (9) 

We can make the substitution, ˜ E L ∝vi ′ v i+1or ˜ E L = ELvi ′ v i+1, where EL  is the constant of 
proportionality.  This adjustment yields
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( )
3

1
3 3

2 –
1

i L

i

v E
v

ε
ε ε

+′ =
+

 . 

The corresponding result for the normalized KE for N particles is 

 

 
( )

( ) ( )

123

23 3

2 1

1 1 1

N

L

N

q E
KE

q q

−
⎧ ⎫⎡ ⎤− −⎪ ⎪⎣ ⎦= ⎨ ⎬

⎡ ⎤⎪ ⎪− + −⎣ ⎦⎩ ⎭

. (10) 

 
In the limit EL = 0, equation 10 reduces to the lossless case, equation 7, as one would expect.  
Note that results are independent of initial velocity and size of the grains. 

3.1.3  KE Parameter Space for STC Hard-Spheres 

Figure 2 highlights the behavior of equation 10 for 0 ≤ q ≤ 0.1 , 3 ≤ N ≤ 20 and selected EL .  The 
tapering q resembles a sigmoid or half-gaussian and is stretched to infinity for small N.  In the 
limits that q = 0 or N = 1 (not shown), KE is unity.  For the lossless, monodisperse chain (panel 
(a), q = 0), that energy is completely transferred regardless of the number of spheres. 

Interestingly, if the initial velocity is supplied to the smaller end of the TC, one also observes 
shock absorption similar to the system in figure 1, albeit with less efficiency.  This is 
accomplished by adjusting the definition of tapering.  In this case, subsequent particles are 
growing in size, i.e., ri+1 = (1 + q)ri.  Equations 7 and 10 are modified accordingly, and the result 
for a lossless system is illustrated in figure 3.  Apparently, both configurations mitigate a 
propagating pulse. 

3.2 The Decorated Tapered Chain 

The second and last TC geometry that we consider is the decorated tapered chain (DTC) 
(figure 4).  This can be assembled from the STC by introducing a single-sized interstitial grain of 
radius reven  between every member of an STC.  We constrain the system to an odd number of 
particles such that the inserted grains are not at the boundary.  Additionally, we presume that 
these interstitial grains will be equal to or smaller than the smallest member ( rN ) of the tapered 
part of the chain; therefore, reven = frN , where 0 < f ≤1.0—although the flexibility is already 
built in for f  to be any size. 



 

6 

 

Figure 2.  KE (N,q,EL) parameter space for the STC hard-sphere approximation.  N varies from 3 to 25 and q from 
0% to 20%. 
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Figure 3.  KE(N,q) parameter space for the STC hard-sphere approximation where the initial 
velocity is supplied to the smaller end of the chain. 

 

 

Figure 4.  The decorated tapered chain:  N = 13, q = 8%, f = 0.7, L = 80.7 mm, and ri = 5 mm. 

It is immediately clear that size mismatch between neighboring grains is a function of position 
along the DTC.  This is in stark contrast to the STC, where successive grains are always smaller 
(or larger) by the same amount.  It is possible then to have DTC chains that appear to resemble 
monodisperse chains for only a portion of the chain.  
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Again, our primary interest is in deriving an expression for the normalized KE, 

 

 
2

1 1 1

out N N N

in

KE KE m v
KE KE m v

′⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
 

2

2 1 2

1 1 1 1

N N i i

N i i

m v v v v
m v v v v

+ +

− +

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞′ ′ ′ ⎛ ⎞′
= ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟′ ′ ′ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

  , (11) 

which can again be obtained by the conservation of momentum and energy where collisions are 
treated as independent.  Since these are not trivial iterative solutions as in the STC hard-sphere 
approximation, we must solve for successive collisions and determine the overall pattern.  We 
will eventually look for forms of ′ v i+1 vi  and then generalize for N particles or N −1 collisions.  
First, the relationship among masses and radii must be evaluated.  Given N(odd) particles in a 
DTC, every other grain will reduce in size by q% such that ri+2 = ε ri, where ε = (1− q).  
Assembling the radii, we have 

 ir  (12) 

 1i Nr f r+ =  (13) 

 2 (1 )i i i i ir r qr q r rε+ = − = − =  (14) 

 3i Nr f r+ =  (15) 

 2
4 2 2 2(1 )i i i i ir r qr q r rε+ + + += − = − =  (16) 

 5i Nr f r+ =  (17) 

 3
6 4 4 4(1 )i i i i ir r qr q r rε+ + + += − = − =  (18) 

  

 1N Nr f r− =  (19) 

 ( )1 2
2 2 2(1 ) N

N N N N ir r qr q r rε −
− − −= − = − =  (20) 

Equations 12–14 imply N = 3, equations 12–16 imply N = 5, etc.  The major equations for radii 
are therefore 

 
( )

( ) ( ) ( )
( )

1 2

–1 2
1 , 3 , , 1

N
N i

N
ii i N

r r

r f r

ε

ε

−

+ + −

=

=
. (21) 
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Recall for masses that mi = ρVi =
4
3

πri
3ρ = ηri

3 .  Note that since η is just a constant and will 

cancel once the conservation equations are put into use, we will ignore it from now on.  This 
expression for mi  combined with equations for ri provide the relations 

 

( )

0 3

3 3
1 1

3 3
2

3 3
3 3

6 3
4

3 3
–1 1

3 1 2 3

 i i

i i i

i i

i i i

i i

N N i

N
N i

m r

m r Ar

m r

m r Ar

m r

m r Ar

m r

ε

ε

ε

ε

+ +

+

+ +

+

−

−

∝

∝ =

∝

∝ =

∝

∝ =

∝

 (22) 

where A = f 3ε3 N−1( ) 2 .  We may now use these to evaluate the conservation equations.  Beginning 
with momentum and assuming that each subsequent particle in the chain begins at rest, we solve 
for the first five collisions.  Primes and double-primes indicate post-collision states.  A primed 
quantity denotes the first post-collision state of a sphere which serves as input to the next 
collision.  To keep track of its velocity after the second collision, it is denoted by a double-prime 
and will eventually be eliminated.  With ε = (1− q), we obtain 

 1 1 1    i i i i i i i i im v m v m v v v Av+ + +′ ′ ′ ′= + → = +  (23) 

 3
1 1 1 1 2 2 1 1 2i i i i i i i i im v m v m v Av Av vε+ + + + + + + + +′ ′′ ′ ′ ′′ ′= + → = +  (24) 

 3 3
2 2 2 2 3 3 2 2 3i i i i i i i i im v m v m v v v Avε ε+ + + + + + + + +′ ′′ ′ ′ ′′ ′= + → = +  (25) 

 6
3 3 3 3 4 4 3 3 4i i i i i i i i im v m v m v Av Av vε+ + + + + + + + +′ ′′ ′ ′ ′′ ′= + → = +  (26) 

 6 6
4 4 4 4 5 5 4 4 5i i i i i i i i im v m v m v v v Avε ε+ + + + + + + + +′ ′′ ′ ′ ′′ ′= + → = +  (27) 

  

From the pattern in the previous formulas, equation 23 can be rewritten as ε0 ′ v i = ε0 ′ v i + A ′ v i+1.  
Evaluating the energy conservation equations yields the same form as equations 23–27 except 
velocities are squared: 

 2 2 2
1i i iv v Av +′ ′= + , (28) 

 2 2 3 2
1 1 2i i iAv Av vε+ + +′ ′′ ′= + , (29) 

 3 2 3 2 2
2 2 3i i iv v Avε ε+ + +′ ′′ ′= + , (30) 
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 2 2 6 2
3 3 4i i iAv Av vε+ + +′ ′′ ′= + , (31) 

 6 2 6 2 2
4 4 5i i iv v Avε ε+ + +′ ′′ ′= + . (32) 

  

We can combine equations 23–27 and 28–32 to eliminate the double-primed terms and form the 

velocity ratios: ′ v i+1

vi

 ,  ′ v i+2

′ v i+1

, etc.  Beginning with equation 23, we isolate ′ v i  and square it to 

obtain ′ v i
2 = vi

2 − 2Avi ′ v i+1 + A2 ′ v i+1
2 .  Next, substitute this into equation 28 and rearrange to obtain 

′ v i+1

vi

.  This is then repeated for equation pairs 24 and 29, 25 and 30, etc., to obtain the following 

ratios: 

 
0

1
0

2i

i

v
v A

ε
ε

+′ =
+

, (33) 

 2
3

1

2i

i

v A
v Aε

+

+

′
=

′ +
, (34) 

 
3

3
3

2

2i

i

v
v A

ε
ε

+

+

′
=

′ +
, (35) 

 4
6

3

2i

i

v A
v Aε

+

+

′
=

′ +
, (36) 

  

where we insert a term of  ε0 in equation 33.  With our goal being relation 11, we combine 
equations 33–36: 

 

 1 2 1

1 1 2 1

N i i N N

i i N N

v v v v v
v v v v v

+ + −

+ − −

′ ′ ′ ′ ′⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟′ ′ ′⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 (37) 

 
0 3 6

0 3 3 6 6 9

3

5

7

2 2 2 2 2 2

N

N

N

A A A
A A A A A A

ε ε ε
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After some observation, the ratio can be put into closed form to obtain 
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Turning to the mass ratios, it appears that most terms cancel. 
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leading to the simple expression 
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We can now identify the normalized KE, equation 11, by combining equations 40 and 43 to form 

 ( )( ) ( )
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∏ , (44) 

with A = f 3ε3 N −1( ) 2  and ε = (1− q).  This is plotted in figure 5, where it is clear that as f 
decreases—so that inertial mismatches increase—the normalized KE decays rapidly.  Note that 
the colorscale is calibrated for each subplot. 

4. Numerical Solution to the Equations of Motion 

A more accurate method of evaluating the dynamics of TCs is to formulate and solve the 
differential equations of motion (EOM).  Given that N is typically small, i i iF m z=∑ can be 

solved, allowing us to easily keep track of velocities, forces, energies, and positions.  The 
problem will consist of TCs barely touching in their initial configuration and affixed between 
rigid walls or spheres of infinite radius. 
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Figure 5.  KE as a function of N,q  and f  for DTC hard-spheres.  Note that the colorscale is calibrated for each 
subplot. 

The always-repulsive potential between adjacent grains i  and i +1 is due to geometric effects 
and derived in Landau and Lifshitz (23).  It can be written as 

 ( ) 5 2 5 21
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where { }: , 1, ,jR j i i N= +  are the radii and 
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Here, δi,i+1 = Ri + Ri+1 − zi+1 − zi( ) represents the overlap between successive grains, where z j  is 
their position.  Additionally, , 1i ia +  has been defined for material properties:  jE , the Young’s 
modulus and jσ , the Poisson’s ratio; and radii, jR .  Note also that j can refer to either particle i 
or i + 1.  If δi,i+1 ≤ 0 , then V = 0 since adjacent grains i  and i +1 begin to lose contact.  For our 
particular study, all materials are the same in any single TC, so it reduces to 

 
23 1

2
D

E
σ⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

. (47) 

Under the Hertzian potential, equation 45, a squeezed sphere initially appears soft.  As 
compression increases, its stillness increases substantially.  In this sense, a Hertz potential can be 
thought of as a nonlinear spring. 

At the boundaries, the enclosing walls are represented by spheres of infinite radius: R0  and RN +1.  
The corresponding potentials then for grains against the boundary scale as  

V δwall ,1( )∝ R1  and V δN ,wall( )∝ RN . 

The force on grain i , therefore, is the sum of influences from its neighboring grains: 

 ( )3 2 3 2
1, 1, , 1 , 1

5
2i i i i i i i i i i

dVm z a a
d

δ δ
δ − − + += = − . (48) 

These equations are solved numerically using the Velocity-Verlet algorithm (27).  The original 
source code (8) which applies to the STC is listed in appendix A.  Modifications to this for the 
DTC are listed in appendix B.   

Results have been obtained for a large selection of chains consisting entirely of  Ti6Al4V or SiC 
spheres.  Arbitrarily, we have chosen to use Ti6Al4V when restitutive losses are ignored (ω = 0) 
and SiC otherwise.  The following material properties were assumed (reference D in 
equation 47). 

Table 1.  Material properties (28). 

Material 
 

ρ  
(mg/mm3) 

D 
(mm2/kN) 

Occurrence 
 

SiC 3.2 0.003266 ω ≠ 0 
Ti6Al4V 4.42 0.01206 ω = 0 

 

Note that the fundamental unit of force in our simulations is the kilonewton and an initial 
velocity of 0.01 mm/µs is applied to the largest end of each chain. 

Simulations were performed for 3 ≤ N ≤ 20 and 0 ≤ q,ω ≤ 0.1 over a system time of 1 ms where 
the timestep was set to 10 ps, corresponding to 108 steps in the integration loop.
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Restitution, the mechanism for introducing energy losses, is tuned by an asymmetry between the 
(contact) forces of loading and unloading during a collision: 

 1  unloading

loading

F
F

ω= − . (49) 

Therefore, the unloading or expansive force in a collision is some fraction of the loading force 
and perfectly elastic collisions correspond to ω = 0. 

In order to handle the hundreds of TC calculations, a Practical Extraction and Report Language 
(PERL) script (appendix C) was created to automate the process.  It consists of nested loops that 
iterate through N and q inserting their new values into a template containing the C code which 
solves the EOM of the TCs.  It then copies this to a directory labeled by some appropriate 
mnemonic.  This was done so that when visualizing the data in MATLAB, it would be easy to 
change directories as part of a loop.  An example directory structure is, 
/w0/N20/N20q10/taperchain1.cpp.  Data files are created for every grain in each TC 
and their number is encapsulated in the filename.  Appendix D contains the MATLAB code to 
generate KE surfaces. 

Recall that we are interested in forming the ratio KEN = KEout KEin , the normalized KE.  Here, 
KEout  is the first* kinetic energy peak felt by the last (smallest) grain and KEin  is a constant 
determined from the initial velocity and density of the first grain.  Conversely, Fout  is the first 
minimum felt by the last grain since the direction of a negative force is into the wall or force 
sensor.  The algorithm to pick out the first turning point for each of these is straightforward.  
Since KE t( ) is a column vector, one can iterate through each element until the first occurrence of 
i +1( )< i  is true.  In that case, i  represents the extremum.  For force, we compare against 
i +1( )> i .  The only data files then that are of interest for KEN  are those that represent the 

dynamics of the first (KEin ) and last particle (KEout ) in each chain.   

4.1 STC 

Figure 6 plots a small cross section of the results for several chains with N = 20, ω = 0.05, 
andq = 0, 0.02, 0.04, 0.06, 0.08, 0.1{ }.  These plots show the kinetic energy spectrum of the 
tail particle as a function of time for the first half of the simulation (500 µs).  From equation 49, 
each collision only transmits 95% of the force.  Note the decreasing scale of KE in each 
underlying panel.  One might expect KE to increase since particle velocity is increasing.  
However, KE scales as v 2 and m ∝ r3 ∝ 1− q( )3 , so the latter term dominates, and consequently 
KE decreases.   

In the top panel of figure 6, we see at about 95 µs that the tail particle in a monodisperse chain 
first receives the energy bundle and undergoes translational motion.  Its contact force with the

                                                 
* Normalization is discussed further in appendix E. 
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Figure 6.  KE as a function of time for the smallest particle in a chain with N = 20, ω = 0.05, and 
q = 0 : 0.02 : 0.1[ ].  Each plot is evaluated for a different tapering with initial KE as 0.0838 J.
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boundary increases as it slows down eventually coming to rest with all energy stored as elastic 
potential at about 100 µs.  This is then converted back to kinetic as the tail particles begin to 
rebound. 

By selecting the first peak in each of these subplots as well as the many other chains not shown 
here, we can form the normalized KE surfaces and observe how well STCs perform as energy 
absorbers. 

Pulses in monodisperse chains ( N ≥15, q = 0) represent a special class of waves known as a 
solitary waves which are remarkably stable and have been studied extensively (2–7,  9,  11–12).  
For TCs ( q ≠ 0), the solitary wave cannot quite fully form because subsequent grains within the 
wave envelope move at higher, disparate velocities with increasingq—leading to greater 
dispersion and destructive wave broadening.  This translational symmetry breaking was also 
reported by and is in agreement with Nakagawa et al.  (4). 

4.1.1  STC KE and Force Parameter Spaces: ( ) ( )KE N,q,ω , F N,q,ω  

Figure 7 highlights the numerical results for KE(N,  q,  constant ω).  Note that it would be very 
difficult and costly to produce a similar plot empirically.  Each node on the surface represents a 
different TC and experiment.  There appears to be a sigmoidal and exponential dependence on q 
and N , respectively, in agreement with the hard-sphere approximation.  These KE surfaces 
represent STC chains that thermalize more than half the incident energy introduced into the 
system.  For example, the least effective shock mitigating geometry that we've simulated here—
KE(ω = 0, N = 3, q = 0)—reduces the output KE by about 60%.  That amount, after restitution is 
accounted for in cases where ω ≠ 0, is distributed among the other grains as kinetic and potential 
energy.  Note again that results are independent of initial grain size.  For monodisperse chains 
( q = 0) in figure 7a, there is asymptotic behavior as N  increases which is a result of energy 
propagating as solitary waves, when N  is of sufficient number (about 15), energy can propagate 
with negligible loss.  Additionally, there is a rapid drop in KE(3 ≤ N ≤ 5, q = 0, ω = 0) which is 
likely due to the width of the incident pulse being longer than the TC.  This implies that wave 
reflection begins before the impulse is fully applied. 

A similar surface can be plotted representing the normalized force for various TCs.  This is 
visible in figure 8 and similar to the KE plots.  Again, the functionality of N  here is essentially a 
one to two phase exponential, but the sigmoidal nature of q is less obvious and can be 
approximated linearly throughout the parameter space.  In general, the magnitude of F  appears 
to be twice that of KE . 

The numerical results can be compared to the hard-sphere approximation by scaling the latter to 
the largest numerical solution—KE ( N = 3, q = 0)—and plotting their difference (figure 9).  
Energy loss is not accounted for in this comparison.  The distribution is due to differences in the 
interaction potential and width of the energy bundle.  Therefore, it appears that for smaller 
particles (i.e., larger q) compressive effects and width of the energy packet becomes increasingly 
important.  This is compounded further by increasing the number of particles, N .
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Figure 7.  Numerical solution of KE N,q( ) parameter space for constant ω .  Note that it would be very difficult 
and costly to produce a similar plot empirically.  Each node on the surface represents a different TC and 
experiment.
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Figure 8.  Numerical solution of F N,q( ) parameter space for constant ω . 
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Figure 9.  Difference plot of the lossless KE parameter spaces for the hard-sphere 
approximation (figure 2a) and numerical solution (7a).  Note that the azimuthal view 
has been rotated 180° for clarity. 

4.1.2  STC Mathematical Model 

It would be convenient to have a predictive capability for at least a selection of individual TCs as 
a function of N, q, and ω.  We therefore propose a mathematical model for the 
KE = KE ω,q,N = 20( ) parameter space of the form 

 ( ),
C EBq DKE q Ae e ωω = , (50) 

which corresponds to a two-dimensional Weibull distribution.  One can obtain the sigmoidal and 
exponential behavior of q and ω , respectively, when the exponents are restricted to C >1 
and E ≤1.  For simplicity, we set E =1 and C = 3 2 since these values provide the general 
functionality.  The coefficients B and D were evaluated using 4th-order polynomial fits and the 
scaling coefficient A is essentially the point KE N = 20,ω = q = 0( ) determined in the simulation.  
It turns out that a 2nd-order fit was not sufficiently robust and a higher-order fit yielded marginal 
gains at the cost of mathematical encumbrance.   

This model currently lacks the rigor sufficient for planar behavior in the limit of small N .  It is 
unclear at this point if N  can be completely decoupled from ω and q and written as an additional 
exponential term.  In all likelihood, the coefficients B and D would be written as functions of N .  
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Ultimately, it would be useful to expand equation 50 and have a model that completely describes 
the normalized KE as a function of N, q, ω, and ∆  where the latter is a constant external loading 
or precompression of the chain.   

In evaluating the fits, we find that  KE ω,  q,  N = 20( ) is described quite well by 

 
( ) ( )

( )

5 4 4 3 3 2 3 2

5 4 3 3 2

 1.5055 10 4.016 10 3.98110 0.0147 0.05435

 4.144 10 1.955 10 0.03962 0.02887 8.341

, 0.35544

       

q q q q q

q q q q

KE q e

e ω

ω
− − −

− −

⎡ ⎤− ⋅ + ⋅ − ⋅ + −⎣ ⎦

⎡ ⎤⋅ + ⋅ − + −⎣ ⎦

= ⋅ ⋅

⋅
 (51) 

It is compelling to rewrite equation 51 in the more suggestive form 

 ( )
11 2 9 2 7 2 5 2 3 2

, q q q q qKE q e e e e eα β γ δ εω ∝  (52) 

 
( ) ( ) ( ) ( )3 2 1 1

 
n n n n nq q q q qe e e e eα β γ δ ε+ + + −

∝  (53) 

where the powers of q have been adjusted to be written as a series in n, the interaction 
potential—equivalent to 2.5 for Hertzian spheres.  The occurrence of an apparent series in n is 
quite striking.  Missing from this of course is a n − 2( ) or q1 2  term which requires a different fit 
for B in equation 50.  Note also the mixed term qω  in equation 51.  This is indicative of a many-
body effect; one cannot have restitution in a single particle chain since, by definition, it requires 
at least two to evaluate the loading and unloading. 

Figure 10 compares the numerical results and the model for the case of N = 20.  The results are 
practically indistinguishable except for minor timestep errors in the simulation which appear as 
noise for large q.  At these values for N  and q, the tail particle has a large velocity and for 
timesteps not small enough, the KE plots lose their smoothness.  The algorithm therefore selects 
a peak close to what the real extremum would be in the limit that the timestep approaches zero.  
As such, the model is more accurate. 

4.2 DTC 

In this section, we address the more capable DTC.  KE time spectra is excluded since an analysis 
of the complicated motion is outside the scope of this report.  Instead, let us focus immediately 
on the KE parameter space and compare with the STC. 

Figure 11 illustrates the intriguing nature of the DTC KE N,q, f( ) surfaces where the 
dissimilarity from the DTC hard-sphere approximation is quite clear.  Immediately obvious is a 
ripple across the surface for large f which translates towards the origin as f  decreases.  The effect 
vanishes at about f = 0.6 and the KE surface resembles that of a much-improved STC for 
f ≤ 0.5.  We propose qualitatively that this is a consequence of the inertial mismatch changing 

as a function of position in the DTC—in contrast to the STC where it is constant along the chain 
and the wave effect is not observed.  
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Figure 10.  The simulated and modeled STC. 

In the side panel in figure 11, several DTCs are shown.  In the top case, f  = 1, so that as the 
incident pulse propagates to the left, the chain becomes increasingly monodisperse.  That degree 
of monodispersity is a function of N and q since wave amplitude and velocity is sensitive to 
them.  If N is large enough, then whatever remaining energy is left could propagate nearly 
lossless like a solitary wave.  As f gets smaller (next panel down), any apparent monodispersity 
begins to disappear.  As one moves to the right in the chain, the interstitial grains become small 
compared to the neighboring grains.  As f  becomes smaller still, the interstitial grain is small 
compared to all grains such that reducing f  has little effect—little enough so that the wave 
behavior on the KE surface is not observed.  Thus there appears to be a transition so that 
when f ≤ 0.5, the chain will never appear monodisperse and inertial mismatches can always be 
considered large.
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Figure 11.  DTC numerical solution of KE N,q, f( ) and sample DTCs for various f  (inset).  The scale is the same 
as that in figure 7. 

5. Experimental Efforts 

Up to this point, most experimental work reported in the open literature has focused on 
monodisperse chains by themselves or as a precursor to TCs.  Here we only discuss the setup 
used in such studies as well as the prototype for our intended investigation of the DTC. 

5.1 STC 

There are two common ways of performing STC experiments.  The first (11) is based on a 
Newton's cradle but more epic in extent (figure 12).  In this particular case, there is a 
monodisperse sequence used to set up a well-defined solitary wave which propagates to the left.  
A small striking sphere on the far right is applied to generate the initial pulse.   
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Figure 12.  STC experimental setup by Job et al. (12). 

The second common STC configuration (4) consists of a V-shaped track which can be slanted to 
ensure proper (centerline) contact of the tapered spheres (figure 13).  Here, the left column 
highlights a monodisperse chain and the right column shows the same experiment but for a TC—
subsequent rows represent later time.  In the middle row, the striker (gold sphere) has hit the 
chain; in the bottom row, the tail particle in the monodisperse chain has perforated the paper 
target (black hole in upper left of picture), while for the TC on the right, it merely dents and 
bounces off the paper.  This is a remarkable demonstration of the impulse decimation capability 
inherent to TCs. 

5.2 DTC 

Figures 14–16 highlight the constituents and current housing of a DTC configuration.   

Within the assembly, interstitial grains are radially constrained along the axis of the DTC by thin 
discs with small holes bored in them (figure 16).  The apparatus can be tested in any orientation; 
however, when vertical, asymmetric loading due to gravity will become a factor.  Uniform 
precompression enhances the shock absorption capability of TCs and will be discussed in the 
next section.  In figure 15, we see that precompression of the DTC prototype can be controlled 
by the large screw at the top of the assembly. 
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Source:  Picture courtesy of Prof. M. Nakagawa of the Colorado School of Mines and Dr. Juan Agui of the National Aeronautics 

and Space Administration–Glenn Research Center. 

Figure 13.  STC experimental setup.  The left half of the figure represents a monodisperse chain while the right a 
TC.  Lower plots denote later time.   
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Figure 14.  Preliminary DTC housing chamber. 
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Figure 15.  DTC constituents. 
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Figure 16.  DTC interstitial grains. 

6. Precompressed Chains 

Apparently, when TCs are precompressed, shock absorption increases substantially (3).  We 
measure precompression, ∆ , as a percentage of particle overlap in the initial state.  The EOM in 
equation 48 are modified accordingly and become 

 ( )[ ] ( )[ ]{ }3 2 3 2
1, 1 1 , 1 1 1

5  
2i i i i i i i i i i i i i im z a R R z z a R R z z− − − + + += + − ∆ − − − + − ∆ − − . (54) 

Figure 17 highlights the impressive results for KE N = 20, ∆ = 0.03%( ) as tapering and 
restitution are varied.  Precompression in a DTC could therefore provide the best shock 
absorption geometry that we have currently considered.
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Figure 17.  KE as a function of tapering and restitution for 
constant N = 20 and 0.03%∆ = . 

 
 

7. TC Armor Panels 

We have seen that Hertzian TCs act as shock absorbers.  In particular, recall that at the end of 
section 3.1.3 we noted that TCs operate regardless of a pulse's direction through the chain.  Thus, 
to maximize efficiency, we can place neighboring STCs in alternating directions. 

For them to become realizable in armor applications, however, one should evaluate them based 
on performance of the whole system.  The specific absorbed energy (SAE)—which has units of 
J/g—is one such metric and commonly used by ballisticians.  It is quantified by equation 55, 
while the volumetric absorbed energy (VAE) is described by equation 56 and has units of J/cm3. 
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Here, KE N,q,ω( ) is the normalized KE that has been evaluated in the numerical simulations.  
Figure 18 illustrates what a TC armor prototype might resemble along with an incident flyer 
plate. 

 

 

Figure 18.  STC armor plate panel. 

 
In equations 55 and 56, KEin  represents the energy of the incoming flyer plate.  For convenience, 
we assume that all materials are Ti6Al4V ( ρ = 4.42 mg/mm3), that uf = 100 m/s, t f = 24.5 mm, 
and that l = w = 230 mm.  Since m = ρV = ρlwt f , the KE of the flyer plate, KEin , is 28.7 kJ.  
Also, in both cases, we set KE N,q,ω( )= KE 20,0.1,0.06( ) ≈ 0.05, which is obtained from the 
numerical results.  Thus, the sizes of the end spheres in such a chain are d20 =10  mm and 
d1 =1.35  mm. 

In order to evaluate M  in equation 55, several assumptions are made and then later relaxed to 
determine a range for M  and better approximate what type of performance a TC armor panel 
might achieve.  Figure 18 displays the relevant variables and configuration for a preliminary 
analysis, where t = 95.8 mm is chosen based on the chain parameters used in picking 
KE N,q,ω( ). 

Each STC would require some type of mechanical support to maintain the overall geometry.  
One solution is to house them in hollow cones as is displayed in the diagram.  Conical springs, or 
Belville washers, are another possibility.  We can absorb this added material into d1 as an 
effective diameter which we set to ˜ d 1 =1.5  mm.  The additional dimensions, w,l, are arbitrarily 
assigned to be a function of the number of TCs: l = w = 20 d20 + ˜ d 1( )= 230mm, so that each side 
is spanned by 40 TCs.  Therefore, the total number of TCs in the armored panel is 1600.  Finally, 
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δt1,δt2 represent thicknesses for enclosing plates so that the TCs aren't exposed.  This amount is 
arbitrary but chosen to be small, δt1 = δt2 = 2.5 mm, so that the total thickness of the panel is 
100.8 mm, or about 4 in. 

Now, M  can be written as the sum, M = NSTCmSTC + 2mδt + msupport + mfill , where the first term is 
the product of the mass of one STC and the total number of them, the second is the contribution 
from the enclosing plates, the third is due to the conical housing of STCs, and the last is the filler 
material which we ignore as being air.  Using conservative values, we let mδt = δt( )lwρ = 0.58 
kg, msupport =1.0 kg so that M =13.63 kg. 

Since equation 55 scales with uf , the velocity of the flyer plate, a wide range of SAE can be 
determined.  If uf =100 m/s, the SAE=2.  Let us assume then that 6.63 ≤ M ≤ 20.63 and 
100 ≤ uf ≤ 300 m/s and plot the SAE surface which is visible in figure 19a.   

The VAE can be calculated by dividing this quantity by the density of the material—since we are 
assuming the whole panel is Ti6Al4V (figure 19b).  Another measure, however, would be to 
divide by the volume of the entire panel since that space is already claimed and cannot be 
occupied by anything else.  In dividing by the density, we are only counting that portion of the 
armor panel contained by Ti6Al4V; it doesn't include the air fills.  Note that the SAE and VAE 
have been determined primarily analytically. 

 

 

Figure 19.  SAE and VAE as a function of M , the total STC armor panel mass, and uf , the incident flyer plate 
velocity. 
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8. Concluding Remarks 

This report has focused on TCs and their inherent ability to decimate propagaing impulses.  Due 
to a lack of dependence on system size, it appears that TCs can provide meter to submicron scale 
shock absorption.  TCs take well-defined pulses, such as shocks, and turn them into noise.  The 
signal is spread out over time and space and the process is known as thermalizing an impulse (3). 

Essentially, the shock is stretched from a few microseconds to several hundred with its extent 
increasing from several grains to all members in the TC.  This is in opposition to monodisperse 
chains which act as highly efficient shock transmitters due to the resilient nature of solitary 
waves.  In fact, Pöschel and Brilliantov have calculated (29) the optimal transmission of KE for 
TCs. 

It turns out that regardless of whether an impulse travels forwards or backwards along a chain, 
both directions mitigate a propagating pulse.  At later times, this likely competes with 
coordinated motion of adjacent grains which may create unpredictable energy or force spikes for 
certain configurations, as figure 7 (lower panel) demonstrates.  Antiparallel orientations of TCs 
can then be arranged to exploit the collective effects of many TCs as an armor panel.  The 
capabliity of such a panel is analytically derived and yields values for the SAE on the same order 
100-102 J/g as other technologies.  However, such a determination is still rather suggestive 
without a full scale prototype.  TCs may be housed in hollow cones or Belville washers (conical 
springs) for added absorption.  Additionally, there is evidence (30) that nitinol (a nickel-titanium 
alloy) may be a better material to choose for the spheres and housing. 

Hard-sphere approximations were analytically obtained for two chain geometries, the STC and 
DTC.  This approximation simplifies the problem to one where the impulse delivered is a single 
grain in width and elastic effects are ignored.  For the STC, this approximation is comparable to 
the numerical results.  However, for the DTC, the differences are quite large and consequently 
elastic effects play a major role in the system.  This is likely due to the increased velocity of 
members in the chain and therefore the number of collisions.   

The authors see ample opportunity for study along several lines to move this technology forward 
and rate it as a useful technology in blast mitigation system.  Quasistatic compression to 
plasticity and failure, ALEGRA simulations, and measuring the effects of many TCs working in 
cooperation are areas we are beginning to investigate. 
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Appendix A.  Simple Tapered Chain Code 1

                                                 
  This appendix appears in its original form, without editorial change. 
1 Pfannes, J.  Energy Propagation in Granular Chains.  M.S. Thesis, State University of New York, Buffalo, NY, May 2003. 
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/* PROGRAM taperchain.cpp 
 
     This program consideres an one dimensional chain of spheres that 
     shrink succesively in radius ("tapered chain").  Initially the spheres 
     are barely in contact, i.  e.  they just touch each other and are not 
     compressed (zero loading).   
     The chain ends at both edges at fixed walls.   
     The program calculates the interaction of the system once disturbed  
     by an instantaneous (delta) impulse exerted on one end of the chain. 
     Restitution both between the spheres and between the edge spheres  
     and the corresponding wall can be introduced. 
     The program does not consider gravity. 
 
     The EOM are solved with the Velocity Verlet algorithm. 
 
     scale of problem: mm-mg-musec (mimimu) 
        in this scale unit of force: 1000 N 
        in this scale unit of energy: 1 J 
                                                                           */ 
 
#include <cmath> 
#include <iostream> 
#include <fstream> 
#include <cstdlib> 
#include <string> 
#include <sstream> 
 
using namespace std; 
 
/************************** ALTERABLE PARAMETER: ****************************/ 
const int nptles=20;   // total number of particles 
const double rho=3.2 /* SiC (mg/mm^3) */, D=0.00326603139013 /* (mm^2/N) */; 
 
const double rlarge = 5.0;       // (radius of large ptle (mm)) 
const double q = 0.0;            // (tapering factor (%)) 
const double xn = 2.5;           // (exponent in potential)     
const double dt = 0.00001;        // (timestepwidth (musec)) 
const unsigned int nsteps = 100000000; // (# steps integration loop) 
const int idiagp = 20000;         // (stepwidth diagnostics) 
const int idump = 20000;          // (stepwidth dump) 
const double v1in = 0.0;         // (initial v small ptle (mm/musec)) 
const double vnin = -0.01;       // initial v large ptle (mm/musec)) 
const double epsilon = 1.0;     // ((1 - restitution factor) all ptles) 
/****************************************************************************/  
 
ofstream readme("taperchain.readme");        // global scope fcts 
ofstream EnergyImpulse("taperchain.EneImp"); 
 
void radii (double rlocal[]) { 
  rlocal[nptles-1] = rlarge; 
  if (q == 0)                     // avoid roundoff errors w/out tapering 
    for (int i = 0; i < nptles-1; i++) 
      rlocal[i] = rlarge; 
  else  
    for (int i = 2; i < nptles+1; i++) 
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      rlocal[nptles-i] = rlocal[nptles-i+1] * (1 - q*0.01); 
} 
 
void masses (double r[], double masslocal[]) { 
  const double pi = 4 * atan(1.0); 
  const double masslarge = (4.0/3.0) * pi * rlarge*rlarge*rlarge * rho; 
  masslocal[nptles-1] = masslarge; 
  if (q == 0)                     // avoid roundoff errors w/out tapering 
    for (int i = 0; i < nptles-1; i++) 
      masslocal[i] = masslarge; 
  else 
    for (int i = 0; i < nptles-1; i++) 
      masslocal[i] = r[i]*r[i]*r[i] * masslarge / (rlarge*rlarge*rlarge); 
} 
 
void strenghtfac (double r[], double alocal[]) { 
  alocal[0] = (2.0 / (5.0 * D)) * (sqrt(r[0])); 
  alocal[nptles] = (2.0 / (5.0 * D)) * (sqrt(r[nptles-1])); 
  if (q == 0)                     // avoid roundoff errors w/out tapering 
    for (int i = 1; i < nptles; i++) 
      alocal[i] = (2.0 / (5.0*D)) * (sqrt(0.5*rlarge)); 
  else  
    for (int i = 1; i < nptles; i++) 
      alocal[i] = (2.0 / (5.0 * D)) * (sqrt((r[i]*r[i-1])/(r[i]+r[i-1]))); 
} 
 
// initialpos prints absolute initial positions, not for calculations 
void initialpos (double r[], double xInitiallocal[]) { 
  if (q == 0)                     // avoid roundoff errors w/out tapering 
    for (int i = 0; i < nptles; i++) 
      xInitiallocal[i] = (2.0*(i+1) - 1) * rlarge; 
  else { 
    xInitiallocal[0] = r[0]; 
    for (int i = 1; i < nptles; i++) 
      xInitiallocal[i] = xInitiallocal[i-1] + r[i-1] + r[i]; 
  } 
} 
 
// absolutpos prints absolute positions to ptle files, not for calculations 
void absolutpos (double r[], double x[], 
   double xInitial[], double xAbsolutlocal[]) { 
  for (int i = 0; i < nptles; i++) 
    xAbsolutlocal[i] = xInitial[i] + x[i]; 
} 
 
void computeAccelerations (double x[], double a[], double r[],  
      double acc[], double overbefore[], 
      double mass[], double& pot) { 
 
  pot = 0.0;          // every call calculates new pot contributions 
 
  for (int i = 0; i < nptles; i++)    // zeroing all acc in every call 
    acc[i] = 0.0;                     //   (= every timestep) 
 
  /******* potential/force between neighboring ptles *****************/ 
  for (int i = 0; i < nptles-1; i++) { 
    if (x[i] > x[i+1]) {                  // only when overlap 
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      double over = x[i] - x[i+1]; 
      double overnm1 = pow(over, (xn - 1.0)); 
      pot += over * overnm1 * a[i+1]; 
      double forceBetw = a[i+1] * xn * overnm1; 
 
      double forceFactor; 
      if (overbefore[i+1] < over)         // when compressing 
 forceFactor = 1.0; 
      else forceFactor = epsilon;         // when decompressing 
 
      forceBetw *= forceFactor; 
                                          // dim acc: force 
      acc[i] -= forceBetw;                // sign(-): towards smaller x 
      acc[i+1] += forceBetw;              // sign(+): towards larger x 
 
      overbefore[i+1] = over;             // update for next timestep  
    } 
    else overbefore[i+1] = 0.0;           // reset when no overlap 
  } 
 
  /** potential/force between fixed wall (small, x=0) <-> small ptle **/ 
  if (x[0] < 0) { 
    double over = - x[0]; 
    double overnm1 = pow(over, (xn - 1.0)); 
    pot += over * overnm1 * a[0]; 
    double forceSmall = a[0] * xn * overnm1; 
 
    double forceFactor; 
    if (overbefore[0] < over) 
      forceFactor = 1.0; 
    else forceFactor = epsilon; 
 
    forceSmall *= forceFactor; 
 
    acc[0] += forceSmall; 
   
    overbefore[0] = over; 
  } 
  else overbefore[0] = 0.0; 
  
  /*** potential/force between fixed wall (large) <-> large ptle ******/ 
  if (x[nptles-1] > 0) { 
    double over = x[nptles-1]; 
    double overnm1 = pow(over, (xn - 1.0)); 
    pot += over * overnm1 * a[nptles]; 
    double forceLarge = a[nptles] * xn * overnm1; 
 
    double forceFactor; 
    if (overbefore[nptles] < over) 
      forceFactor = 1.0; 
    else forceFactor = epsilon; 
 
    forceLarge *= forceFactor; 
 
    acc[nptles-1] -= forceLarge; 
 
    overbefore[nptles] = over; 
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  } 
  else overbefore[nptles] = 0.0; 
 
  /***** real dim of acc: division by mass **********/ 
  for (int i = 0; i < nptles; i++) 
    acc[i] /= mass[i]; 
} 
 
void velocityVerletStep (double x[], double v[], double acc[],  
    double a[], double r[], double overbefore[], 
    double mass[], double& pot) { 
 
  for (int j = 0; j < nptles; j++) { 
    x[j] += v[j] * dt + 0.5 * acc[j] * dt*dt; 
    v[j] += 0.5 * acc[j] * dt; 
  } 
 
  computeAccelerations (x, a, r, acc, overbefore, mass, pot);   
 
  for (int j = 0; j < nptles; j++)  
    v[j] += 0.5 * acc[j] * dt; 
} 
 
void ptleHeader (ofstream* print, int k) { 
  (* print) << "# ptle " << k+1 << ": time (musec)" << '\t' << "x (mm)"  
     << '\t' << "v (mm/musec)" << '\t' << "a (mm/musec^2)"  
     << '\t' << "kin.  E.  (J)" << '\t' << "f (kN)" << '\t'  
     << "impulse (mg*mm/musec)" << '\t' << "xRelative (mm)" << '\n'; 
} 
 
void dumpData (double t, double mass[], double v[], double acc[], 
        double r[], double x[],            // scope absolutpos 
        double xInitial[], double xAbsolut[], 
        ofstream* print, int k) { 
 
  double keDumpPt[nptles];    // new arrays for dumping data 
  double vDumpPt[nptles];       // since arrays pass by argument 
  double accDumpPt[nptles];       // dump data manipulated 
  double xDumpPt[nptles]; 
 
  keDumpPt[k] = 0.5 * mass[k] * v[k]*v[k]; 
  if (keDumpPt[k] < 1.0e-20) keDumpPt[k] = 0.0; // set small values to zero 
   
  vDumpPt[k] = v[k]; 
  if (vDumpPt[k] < 1.0e-20 && vDumpPt[k] > -1.0e-20) vDumpPt[k] = 0.0; 
   
  accDumpPt[k] = acc[k]; 
  if (accDumpPt[k] < 1.0e-20 && accDumpPt[k] > -1.0e-20) accDumpPt[k] = 0.0; 
   
  xDumpPt[k] = x[k]; 
  if (xDumpPt[k] < 1.0e-20 && xDumpPt[k] > -1.0e-20) xDumpPt[k] = 0.0; 
 
  absolutpos (r, x, xInitial, xAbsolut); // calculate absolute pos. 
 
  (* print) << t << '\t' << xAbsolut[k] << '\t' << vDumpPt[k]  << '\t' 
     << accDumpPt[k] << '\t' << keDumpPt[k] << '\t'  
     << accDumpPt[k]*mass[k] << '\t'  
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     << mass[k]*vDumpPt[k] << '\t' << xDumpPt[k] << '\n'; 
} 
 
void dumpEnergyImpulse (double t, double kelocal, double telocal, double pot, 
   double ptotallocal, double mass[], double v[]) { 
  kelocal = 0.0; 
  ptotallocal = 0.0; 
  double absptotallocal = 0.0;              // scope only within function 
  for (int j = 0; j < nptles; j++) { 
    kelocal += mass[j] * v[j]*v[j]; 
    ptotallocal += mass[j] * v[j]; 
    absptotallocal += mass[j] * abs(v[j]); 
  } 
  kelocal *= 0.5; 
  telocal = kelocal + pot; 
  double potDump = pot; 
 
  if (kelocal < 1.0e-20) kelocal = 0.0;    // set very small values to zero 
  if (ptotallocal < 1.0e-20 && ptotallocal > -1.0e-20) ptotallocal = 0.0; 
  if (telocal < 1.0e-20) telocal = 0.0; 
  if (potDump < 1.0e-20) potDump = 0.0; 
  if (absptotallocal < 1.0e-20) absptotallocal = 0.0; 
 
  EnergyImpulse.precision(16); 
  EnergyImpulse << t << '\t' << kelocal  << '\t' << potDump << '\t'  
  << telocal << '\t' << absptotallocal << '\t'  
  << ptotallocal << '\n'; 
} 
 
void readmeInfo (double ke, double pot, double te, double ptotal, 
   double ke1in, double kenin, double p1in, double pnin, 
   double r[], double xInitial[], double mass[], 
   double a[]) { 
 
  readme << '\t' << ":-) *** TAPERCHAIN within walls *** (-:" 
  << '\n' << '\n'; 
  readme << "parameter of this run: " << '\n' << '\n'; 
  readme << "total number of particles: " << '\t' << '\t' << nptles << '\n'; 
  readme << "density of particles (mg/mm^3): " << '\t' << rho << '\n'; 
  readme << "quantity D of particles (mm^2/N): " << '\t' << D << '\n'; 
  readme << "radius of large ptle (mm): " << '\t' << '\t' << rlarge << '\n'; 
  readme << "tapering factor (%): " << '\t' << '\t' << '\t' << q << '\n'; 
  readme << "exponent in potential: " << '\t' << '\t' << '\t' << xn << '\n'; 
  readme << "timestepwidth (musec): " << '\t' << '\t' << '\t' << dt << '\n'; 
  readme << "# steps integration loop: " << '\t' << '\t' << nsteps << '\n'; 
  readme << "stepwidth diagnostics: " << '\t' << '\t'  << '\t' << "every "  
  << idiagp << " timesteps" << '\n'; 
  readme << "stepwidth dump: " << '\t' << '\t'  << '\t' << "every "  
  << idump << " timesteps" << '\n'; 
  readme << "initial v small ptle (mm/musec): " << '\t' << v1in << '\n'; 
  readme << "initial v large ptle (mm/musec): " << '\t' << vnin << '\n'; 
  readme << "restitution factor for all ptles: " << '\t' << 1-epsilon << '\n' 
  << '\n'; 
  readme << "total length of run (musec): " << '\t' << dt * nsteps << '\n'; 
  readme << "total rows recorded for .EneImp file: " << '\t' << '\t'  



 

41 

  << nsteps/idiagp +1 << '\n'; 
  readme << "total rows recorded for particle files: " << '\t'  
  << nsteps/idump +1 << '\n' << '\n'; 
  readme << "Initial system info (t=0): " << '\n' << '\n'; 
  readme << "kin.  E.  (J)" << '\t' << "pot.  E.  (J)" << '\t'  
  << "tot.  E.  (J)" << '\t' << "total impulse (mg*mm/musec)" << '\n';  
  readme << ke  << '\t' << pot << '\t' << te << '\t' << ptotal  
  << '\n' << '\n'; 
  readme << "kin.  E.  of small particle (J): " << '\t' << '\t' << ke1in  
  << '\n'; 
  readme << "kin.  E.  of large particle (J): " << '\t' << '\t' << kenin  
  << '\n'; 
  readme << "impulse of small particle (mg*mm/musec): " << '\t'  
  << p1in << '\n'; 
  readme << "impulse of large particle (mg*mm/musec): " << '\t'  
  << pnin << '\n' << '\n'; 
  readme << "particle radii (mm): " << '\n'; 
  for (int i=0; i < nptles; i++) { 
    readme << r[i] << '\t'; 
   } 
  readme << '\n' << '\n'; 
  readme << "initial particle positions (mm): " << '\n'; 
  for (int i=0; i < nptles; i++) { 
    readme << xInitial[i] << '\t'; 
   } 
  readme << '\n' << '\n'; 
  readme << "total length of one dimensional alignment (mm): " << '\t' 
  << xInitial[nptles-1] + r[nptles-1] << '\n' << '\n'; 
  readme << "particle masses (mg): " << '\n'; 
  for (int i=0; i < nptles; i++) { 
    readme << mass[i] << '\t'; 
   } 
  readme << '\n' << '\n'; 
  readme << "particle interaction strenghts (0.0316*N/mm^(3/2)): " << '\n'; 
  for (int i=0; i < nptles+1; i++) { 
    readme << a[i] << '\t'; 
   } 
  readme << '\n'; 
} 
 
 
 
int main ( ) { 
 
  double r[nptles], x[nptles], xAbsolut[nptles], xInitial[nptles], 
    v[nptles], acc[nptles], mass[nptles], a[nptles+1],  
    overbefore[nptles+1], pot; 
 
  /******************** functions *****************************/ 
  radii (r); 
  masses (r, mass); 
  strenghtfac (r, a); 
  initialpos (r, xInitial); 
 
  /********************** output files ****************************/ 
  /****** ptle-files *********/ 
  ofstream print [nptles]; 
  for (int k = 0; k < nptles; k++) { 
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    string filename; 
    ostringstream buffer; 
 
    buffer << "taperchain_" << k+1 << ".dat"; 
    filename = buffer.str(); 
 
    print[k].open(filename.c_str()); // convert string to char 
  } 
 
  for (int k = 0; k < nptles; k++)  // header for particles 
    ptleHeader(& print[k], k); 
  /***************************/ 
 
  // header for .EneImp file  
  EnergyImpulse << "# time" << '\t' << "kin.  E.  (J)"  << '\t'  
  << '\t' << "pot.  E.  (J)" << '\t' << '\t'  
  << "total E.  (J)" << '\t' << '\t' 
  << "|(total imp.)| (mg*mm/musec)" << '\t' 
  << "total imp.  (mg*mm/musec)" << '\n'; 
  /*****************************************************************/ 
 
  for (int i = 0; i < nptles; i++) {     // zeroing 
    x[i] = 0.0;          // relative particle positions for calculation 
    v[i] = 0.0; 
    acc[i] = 0.0; 
    overbefore[i] = 0.0; 
  } 
  overbefore[nptles] = 0.0; 
  double t = 0.0; 
 
  v[0] = v1in;                         // mind special input data 
  v[nptles-1] = vnin; 
 
  /**************** initial energy info *********************************/ 
  double ke1in = 0.5 * mass[0] * v[0]*v[0];   // initial kE of edge ptles 
  double kenin = 0.5 * mass[nptles-1] * v[nptles-1]*v[nptles-1]; 
  double p1in = mass[0] * v[0];      // initial impulse of edge particles 
  double pnin = mass[nptles-1] * v[nptles-1]; 
 
  computeAccelerations (x, a, r, acc, overbefore, mass, pot);   
                                     // call for initial potential energy 
   
  double ke = 0.0;                   // checking for initial system energy 
  double ptotal = 0.0; 
  for (int i = 0; i < nptles; i++) { 
    acc[i] = 0.0;      // reset acc for verlet in case of initial overlap 
    ke += mass[i] * v[i]*v[i]; 
    ptotal += mass[i] * v[i]; 
  } 
  ke *= 0.5; 
  double te = pot + ke;                   // initial total system energy 
 
  readmeInfo (ke,  pot,  te,  ptotal, ke1in, kenin, p1in, pnin, 
       r, xInitial, mass, a); 
 
  /******************* begin of timestep loop *********************/ 
  for (unsigned int i = 0; i < nsteps+1; i++) { 
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    t = i * dt; 
 
    velocityVerletStep (x, v, acc, a, r, overbefore, mass, pot); 
     
    /*********** check system energy, plot data *******************/ 
    if ((i % idiagp) == 0) { 
      dumpEnergyImpulse(t, ke, te, pot, ptotal, mass, v); 
    } 
 
    /********* check particle energy, plot data *******************/ 
    if ((i % idump) == 0) { 
      for (int k = 0; k < nptles; k++) { 
      dumpData(t, mass, v, acc,                  // scope dumpData 
        r, x, xInitial, xAbsolut,         // scope absolutpos 
        & print[k], k); 
      } 
    } 
  }/******************** end of timestep loop *********************/ 
 
  readme.close(); 
  EnergyImpulse.close(); 
   
  for (int k = 0; k < nptles; k++)   // closing particle files 
    print[k].close(); 
} 
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Appendix B.  Decorated Tapered Chain Modifications  

 

                                                 
  This appendix appears in its original form, without editorial change. 
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/************************** ALTERABLE PARAMETER: ****************************/ 
int nptles = 3;     // total number of particles 
const double f = 0.9;   // fractional size of interstitial grain w.r.t last 
grain 
const double rho=4.42;  // TiAlV (mg/mm^3)   
const double D = 0.01206; // TiAlV (mm^2/N)  
 
const double rlarge = 5.0;        // (radius of large ptle (mm)) 
const double q = 0.0;            // (tapering factor (%)) 
const double xn = 2.5;            // (exponent in potential)     
const double dt = 0.00001;        // (timestepwidth (musec)) 
const unsigned int nsteps = 100000000; // (# steps integration loop) 
const int idiagp = 20000;         // (stepwidth diagnostics) 
const int idump = 20000;          // (stepwidth dump) 
const double v1in = 0.0;          // (initial v small ptle (mm/musec)) 
const double vnin = -0.01;        // initial v large ptle (mm/musec)) 
const double epsilon = 1.0;       // ((1 - restitution factor) all ptles) 
/****************************************************************************/  
 
ofstream readme("taperchain.readme");        // global scope fcts 
ofstream EnergyImpulse("taperchain.EneImp"); 
 
// Generate radii and masses for DTC  
void spheres (double rlocal[], double masslocal[]) {  
   rlocal[nptles-1] = rlarge; // shifts everything to index starting at zero  
   double tapering = 1 - q*0.01;  
   const double pi = 4 * atan(1.0); 
   const double masslarge = (4.0/3.0) * pi * pow(rlarge,3) * rho;    
   masslocal[nptles-1] = masslarge; 
   if (q==0 && f==1.0)   // Monodisperse in DTC 
   for (int i=0; i<nptles-1; i++) { 
  rlocal[i]    = rlarge; 
  masslocal[i] = masslarge; 
      } 
   else if (q==0) {    // Quasi-Monodisperse: Avoid 
roundoff errors without tapering        
      for (int i=1; i<nptles-1; i=i+2) {   // Interstitial grains  
  rlocal[i] = rlarge*f;  
  masslocal[i] = (4.0/3.0) * pi * pow(rlocal[i],3) * rho; 
      } 
      for (int i=0; i<nptles-1; i=i+2) {   // Non-interstitial 
grains  
  rlocal[i] = rlarge;  
  masslocal[i] = masslarge; 
   }  
   }  
   // non-monodisperse chains  
   else {  
      for (int i=1; i<nptles-1; i=i+2) {   // Find radii of 
interstitial grains 
        rlocal[i] = f*pow(tapering,(nptles-1)/2)*rlarge;  
        masslocal[i] = (4.0/3.0) * pi * pow(rlocal[i],3) * rho; 
      } 
   for (int i=nptles-1; i>=0; i=i-2) {    //Find radii of 
non-interstitital grains 
        rlocal[i-2] = rlocal[i] * tapering;  
  masslocal[i-2] = (4.0/3.0) * pi * pow(rlocal[i-2],3) * rho; 
   }  
   }  
} 
 
void strenghtfac (double r[], double alocal[]) { 
  alocal[0] = (2.0 / (5.0 * D)) * (sqrt(r[0])); 
  alocal[nptles] = (2.0 / (5.0 * D)) * (sqrt(r[nptles-1])); 
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  if (q == 0 && f == 1.0)   // avoid roundoff errors w/out 
tapering 
    for (int i = 1; i < nptles; i++) 
       alocal[i] = (2.0 / (5.0*D)) * (sqrt(0.5*rlarge)); 
  else  
    for (int i = 1; i < nptles; i++) 
      alocal[i] = (2.0 / (5.0 * D)) * (sqrt((r[i]*r[i-1])/(r[i]+r[i-1]))); 
} 
 
// initialpos prints absolute initial positions, not for calculations 
void initialpos (double r[], double xInitiallocal[]) { 
  if (q == 0 && f == 1.0 )                     // avoid roundoff errors w/out 
tapering 
    for (int i = 0; i < nptles; i++) 
      xInitiallocal[i] = (2.0*(i+1) - 1) * rlarge; 
  else { 
    xInitiallocal[0] = r[0]; 
    for (int i = 1; i < nptles; i++) 
      xInitiallocal[i] = xInitiallocal[i-1] + r[i-1] + r[i]; 
  } 
}
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Appendix C.  Practical Extration and Report Language (PERL) Script  
for Parametric Studies 

                                                 
  This appendix appears in its original form, without editorial change. 
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#!/usr/bin/env perl 
 
# This program automates the considerable task of setting up parametric 
studies on the tapered 
# spherical elastic 1-D grain problem.  It takes an input file: 
taperchain29.cpp and searches  
# through it replacing the values of epsilon, q, and N in for loops and 
spitting out a file 
# in the appropriate directory.  The directories are created on the fly. 
# This version uses the updated directories and is looking at initial velocity 
on the small  
# grain. 
 
$w = 0.1; 
$FILE_NAME   = "taperchain28_w01.cpp"; 
$SOURCE_DIR  = "/home/rldoney";  
#$SOURCE_DIR  = "/Users/bob/Work/Classes/Spring 2004/Dr.  Sen study/runs"; 
$FILE_IN     = "$SOURCE_DIR/$FILE_NAME"; 
$OUT_DIR     = "/nfs/scratch/rldoney/TiAlV/D.SimpleTapered"; 
#$OUT_DIR     = "$SOURCE_DIR/TiAlV/D.SimpleTapered/D.Vin_large/"; 
$EPSILON_CHK = "const double epsilon ="; # Set pattern to match line with 
epsilon 
$Q_CHK      = "const double q =";   # Set pattern to match 
line with q 
$N_CHK       = "int nptles=";    # Set pattern to match line 
with N 
 
system("clear");  # clear the screen; 
 
#for($w = 0.0; $w<=0.02; $w+=0.01) {  # Restitution 
$epsilon = 1.0 - $w; # taperchain.cpp program uses epsilon instead of w 
directly 
print"\n\n::::::::  w=$w \t epsilon = $epsilon  :::::::::\n"; 
system("date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'"); 
print"\n"; 
chdir("$OUT_DIR") or die "Cant open $OUT_DIR"; 
mkdir("w$w"); 
chdir("w$w") or die "Cant open $OUT_DIR/w$w"; 
   
for($N=3; $N <=20; $N++) {     
    mkdir("N$N"); 
    chdir("N$N") or die "Cant open N$N"; 
 
 for($q=0; $q <=10; $q++) {    
      mkdir("N$N\q$q");   
      chdir("N$N\q$q") or die "Cant open N$N\q$q"; 
      $CURRENT_DIR = `pwd`;     
  chop($CURRENT_DIR);   # remove trailing \n 
  print"Current Dir: $CURRENT_DIR\n"; 
  $FILE_OUT= "$CURRENT_DIR/$FILE_NAME";  
  open(FROM, "$FILE_IN") or die "Cant open $FILE_IN: $!"; 
  open(TO, ">$FILE_OUT") or die "Cant open $CURRENT_DIR/$FILE_OUT: 
$!"; 
  print"  "; 
  system("date '+TIME: %H:%M:%S'"); 
   
  while(<FROM>) {  # Read in the file line by line into $_ 
 
    # Replacements (Regular expression matching) 
    if($w != 0) {  
       s/$EPSILON_CHK \d+\.\d+/$EPSILON_CHK $epsilon/; # change 
epsilon     
    } 
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    s/$N_CHK\d+/$N_CHK $N/;    # change N 
    s/$Q_CHK \d+\.\d+/$Q_CHK $q\.0/;  # change q  
         
    print TO $_;    # Write the current line with any 
changes to TO 
    close TO; 
  } 
  close FROM;   
 
 # Escape to the shell, compile the file, and run it 
 # It was unexpected, but we need the ' ' because of the spaces in the 
path 
 system ("g++ '$FILE_OUT'");   
 system ("./a.out"); 
     chdir("../");  
 } 
  chdir("../"); 
  print("\n"); 
} 
 
system("date '+DATE: %m/%d/%y%nTIME: %H:%M:%S'"); 
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Appendix D.  MATLAB Code for Generating Numerical Kinetic  
Energy Surfaces 

                                                 
  This appendix appears in its original form, without editorial change. 
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clc; format compact; format long 
 
% STC directory 
cd '/Volumes/Xternal/Individual Study/TiAlV/D.SimpleTapered/D.Vin_large' 
pwd 
wi   = 0; 
 
qmin = 0; 
qmax = 10; 
qtot = qmax-qmin + 1; 
fileprefix = 'taperchain_'; 
for w=0.0 : .02 : 0.1 
    wi = wi + 1; 
    cd (['w',num2str(w)]); 
    Ni = 0; 
    for N=3:1:20 
      Ni = Ni + 1;                    % Since N skips, we need an index for N 
      filesuffix = N;                    % For simple tapered chain 
      cd (['N',num2str(N)])            
      foldername = (['N',num2str(N)]);            % Build name of N# directory 
      foldernameq = ([foldername,'q']);           % Build name of N#q 
directory 
      for q=qmin:qmax 
        %qi = q;              % If we ignore the monodisperse case 
        qi = q + 1;         % Indices can't be zero, so create qi as an index  
        foldername = ([foldernameq,num2str(q)]);    % Foldername is determined 
by current q 
        cd([foldername]) 
        file = ([fileprefix,num2str(filesuffix)]);   
        filename = ([file,'.dat']);                 % Add the .dat suffix to 
current filename 
        pwd 
 
        % Largest Grain  
        KEinL(Ni,qi,:)   = dlmread([filename],'\t','E2..E12');    % 
E(J)       - KE 
        %FinL(Ni,qi,:)   = dlmread([filename],'\t','F2..F1202');  % 
F(kN)      - Force 
         
        % Smallest Grain 
        %t(Ni,qi,:)      = dlmread('taperchain_1.dat','\t','A2..A5002'); 
   % t(us) - Time 
        KEoutS(Ni,qi,:)   = dlmread('taperchain_1.dat','\t','E2..E1502'); 
 % E(J) - KE 
        %FoutS(Ni,qi,:)   = dlmread('taperchain_1.dat','\t','F2..F1202'); 
 % F(kN) - Force 
         
        % INPUTS 
        % ======= 
        % Maximum input kinetic energy is 1st element (initial velocity)  
        % in the largest grain of every chain 
        KEmax_in_L(Ni,qi,:)     = KEinL(Ni,qi,1);   
         
        % Maximum input Force is somewhere early on for 1st element. 
        %% ANDed portion is to make sure a small peak doesn't occur earlier 
        %for i=1:1200 
        %    if (FinL(Ni,qi,i+1) < FinL(Ni,qi,i)) && (FinL(Ni,qi,i) > 0.001) 
        %        Fmax_in_L(Ni,qi)      = FinL(Ni,qi,i); 
        %        break 
        %    end 
        %end 
         
        % OUTPUTS 
        % ======== 
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        % New technique of normalizing: wrt first peak hitting last grain.   
        % peak occurs when comparing the difference between the ith and 
        % (i+1)st elements.  when it is less than zero we have just passed a 
        % peak 
        %% ANDed portion is to make sure a small peak doesn't occur earlier 
        for i=1:1200    % Only need a small part of t 
             
            if (KEoutS(Ni,qi,i+1) < KEoutS(Ni,qi,i)) && (KEoutS(Ni,qi,i) > 
0.001) 
                KEmaxF_out_S(Ni,qi) = KEoutS(Ni,qi,i);  
                break 
            end 
             
            % For force, since the acceleration is the other way, the sign 
            % < goes to >.  And we want only want the magnitude of the force 
            %FmaxF_out_S(Ni,qi) = abs(min(FoutS(Ni,qi,:))); 
            %if (FoutS(Ni,qi,i+1) > FoutS(Ni,qi,i))  
            %    FmaxF_out_S(Ni,qi) = abs(FoutS(Ni,qi,i));  
            %    break 
            %end 
            i = i+1; 
        end 
        cd .. 
        clear foldername       
      end 
      cd .. 
    end 
    %Fnorm_in_L    = FmaxF_out_S ./ Fmax_in_L;     % Normalize Fout/Fin per 
each specific grain 
    KEnorm_in_L    = KEmaxF_out_S ./ KEmax_in_L;     % Normalize Fout/Fin per 
each specific grain 
    cd '/Volumes/Xternal/Individual Study/TiAlV/D.SimpleTapered/D.Vin_large' 
     
    Ni = linspace(3,20,18);      
    qi2 = linspace(qmin,qmax*0.01,qtot); 
 
    % Figure labeling 
    if wi == 1 
        letter = 'a'; 
    elseif wi == 2 
        letter = 'b'; 
    elseif wi == 3  
        letter = 'c'; 
    elseif wi == 4 
        letter = 'd'; 
    elseif wi == 5  
        letter = 'e'; 
    else 
        letter = 'f'; 
    end 
 
    % For some reason, these 3-d plots switch the x and y plotting.  The 
    % variables are correct, but the ordering was unexpected 
    %plot( squeeze( Ft(1,2,:)) , squeeze( Fin(1,2,:) )   )      % N = 3 , q = 
1  
    subplot(3,2,wi) 
      %surf(qi2,Ni,Fnorm_in_L) 
      surf(qi2,Ni,KEnorm_in_L) 
      xlabel('\bf q') 
      ylabel('\bf N_i') 
      %if (wi == 1 | wi == 3 | wi == 5) 
        zlabel('\bf \it KE_N') 
      %end 
      text(0,18,0.4,['\it \omega = ',num2str(w)]) 
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      % subplot labeling based on index of wi 
      text(0,18,0.5,['\bf (',letter,')'],'FontSize',14,'FontName','Times') 
 
      axis([0.0 0.1 3 21 0 0.5]) 
      view(135,10) 
      caxis([0 0.5])      % Adjust the limits of the color scheme for Z, must 
come before colorbar  
      %colorbar   
end 
cd '/Applications/Physics/Matlab7' 
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Appendix E.  Normalization 

Normalization has posed some challenges in trying to properly assess the absorption quality of a 
simple tapered chain (STC).  Proper normalization schemes will help the architect better 
determine which STC is best for which application.  Recall that the goal is to measure the energy 
at the last grain versus the energy put into the system by the first.  In general, the functional form 
will stay the same regardless of the strategy and adjustments in the normalization will simply 
scale the kinetic energy (KE) surface.  In some cases, the output force of each chain is based on 
the maximum value felt by any possible chain under consideration (i.e., monodisperse and no 
energy loss).1 This gives a measure of how one chain is better than another.   

In this communication, we have chosen to form the ratio based on the output KE and force felt 
by each specific chain.  This serves to grade the individual effectiveness of any chain without 
reference to another.  In choosing a peak value with this method, one could identify either when 
the impulse first hits the last grain or look for the absolute maximum peak whenever it may 
occur.  We have chosen to use the former for several reasons.  First, it ignores the complexity of 
nonlinear reverberations which can lead to large peaks at unpredictable times.  Second, we argue 
that this is just as realistic as selecting the maximum value anywhere in the time spectrum.   

It turns out that in most cases, the absolute maximum is the first peak.  There are special cases 
where the maximum may occur at later times and this needs to be investigated further.  In  
figure 6 (in the body of the report) for q = 0.1, for example, we see the striking occurrence of the 
secondary pulse about 225 µs being much stronger than the initial arrival at 35 µs.  This is one of 
those instances that disagrees with the way we choose to normalize our KE surfaces.  We have 
investigated this particular case further without including extraneous plots and report the 
following observations.  The effect exists for N =15 − 20 for constant ω .  When N = 20 is held 
fixed and restitution is increased, the peak KE once again occurs for the first arrival of the pulse.  
As q increases, so do the number of collisions and the requisite energy loss (sinceω ≠ 0).  
Therefore, it is less likely to find a global peak later in the simulation.  The situation is further 
complicated by the interplay between q and ω .

                                                 
1 Pfannes, J.  Energy Propagation in Granular Chains.  M.S. Thesis, State University of New York, Buffalo, NY, May 2003. 
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